Farbige Parkette von W. Borho (1988, Taschenbuch)

Faboplay (19787)
99,7% positive Bewertungen
Preis:
€ 54,99
(inkl. MwSt.)
Gratis 2-Tage-Lieferung - Sendungsverfolgung
Lieferung zwischen Di, 17. Jun und Mi, 18. Jun
Rücknahme:
1 Monat Rückgabe. Käufer zahlt Rückversand. Wenn Sie ein eBay-Versandetikett verwenden, werden die Kosten dafür von Ihrer Rückerstattung abgezogen. Für eBay Plus-Mitglieder ist der Rückversand im Inland kostenlos. Mehr erfahren.
Artikelzustand:
Neu
Titel: Farbige Parkette | Zusatz: Mathematische Theorie und Ausführung mit dem Computer. Vier Aufsätze zur ebenen Kristallographie | Medium: Taschenbuch | Autor: W. Borho (u. a.) | Einband: Kartoniert / Broschiert | Inhalt: 203 S. / 15 s/w Illustr. / 27 farbige Illustr. / 203 S. 42 Abb. / 27 Abb. in Farbe. | Sprache: Deutsch | Seiten: 204 | Maße: 203 x 127 x 12 mm | Erschienen: 01.09.1988 | Anbieter: Faboplay.

Über dieses Produkt

Produktinformation

Die vier Aufsätze sowie die sieben Farbtafeln, aus de nen das vorliegende Büchlein besteht, befassen sich mit dem Thema der mathematischen Kristallographie. Aus Gründen der Anschaulichkeit und der allgemeinen Verständlichkeit beschränken wir uns dabei auf Kristal lographie in der euklidischen Ebene (gehen also weder auf den dreidimensionalen noch auf den hyperbolischen Fall ein). Wir befassen uns hier vor allem mit zwei großen Pro blemkreisen: dem Parkettierungs- und dem Färbungs Problem in der euklidischen Ebene. Beide Probleme sind schon im Kunsthandwerk der alten Ägypter und Ara ber sehr ernstlich behandelt und, bevor sich die Wis senschaftler - vor allem Physiker und Mathematike- in unserem Jahrhundert nach und nach diesen tiefsinni gen Problemen in angemessener Weise zugewendet ha ben, neuerdings von dem holländischen Graphiker Mau rits Cornelius Escher in wunderschöner Weise vertieft worden. Beim Parkettierungs-Problem geht es darum, die Ebe ne durch lauter deckungsgleiche Parkettsteine - lücken los und überlappungsfrei - zu überdecken. Und zwar soll dies in regelmäßiger Weise geschehen, das heißt doppelt periodisch, wie Mathematiker das nennen. Ein Beispiel ist die Überdeckung der Ebene durch Eschers echsen förmige Parkettsteine, wie sie auf dem Umschlag dieses Büchleins abgebildet sind. Beim Färbungs-Problem sollen die Parkettsteine mit einer Anzahl verschiedener Farben eingefärbt werden, und zwar ebenfalls in regelmäßiger (das heißt doppelt periodischer) Weise. Ein Beispiel ist wieder das neun farbige Echsenparkett auf dem Umschlag. Jede Lösung dieser Aufgaben nennen wir ein Farbparkett. In den Farb tafeln 1-7 dieses Büchleins kann man weitere Beispiele von Farbparketten anschauen.

Produktkennzeichnungen

ISBN-103764322233
ISBN-139783764322236
eBay Product ID (ePID)176090310

Produkt Hauptmerkmale

VerlagBirkhäuser Basel, Springer Basel
Erscheinungsjahr1988
Anzahl der Seiten204 Seiten
SpracheDeutsch
PublikationsnameFarbige Parkette
AutorW. Borho
FormatTaschenbuch

Maße

Höhe1 cm
Gewicht225 g
Länge20 cm
Breite12 cm

Zusätzliche Produkteigenschaften

HörbuchNo
InhaltsbeschreibungPaperback
MitautorBongartz, Mertens, Steins
Nummer Innerhalb der Serie4
BuchreiheMathematische Miniaturen

Alle Angebote für dieses Produkt

Sofort-Kaufen
Alle Artikelzustände
Neu
Gebraucht
Noch keine Bewertungen oder Rezensionen