Bild 1 von 1

Galerie
Bild 1 von 1

Machine Learning verstehen - Hardcover, von Shalev-Shwartz Shai - sehr gut-
US $39,03
Ca.EUR 33,31
Artikelzustand:
Sehr gut
Buch, das nicht neu aussieht und gelesen wurde, sich aber in einem hervorragenden Zustand befindet. Der Einband weist keine offensichtlichen Beschädigungen auf. Bei gebundenen Büchern ist der Schutzumschlag vorhanden (sofern zutreffend). Alle Seiten sind vollständig vorhanden, es gibt keine zerknitterten oder eingerissenen Seiten und im Text oder im Randbereich wurden keine Unterstreichungen, Markierungen oder Notizen vorgenommen. Der Inneneinband kann minimale Gebrauchsspuren aufweisen. Minimale Gebrauchsspuren. Genauere Einzelheiten sowie eine Beschreibung eventueller Mängel entnehmen Sie bitte dem Angebot des Verkäufers.
Oops! Looks like we're having trouble connecting to our server.
Refresh your browser window to try again.
Versand:
Kostenlos USPS Media MailTM.
Standort: Philadelphia, Pennsylvania, USA
Lieferung:
Lieferung zwischen Fr, 29. Aug und Fr, 5. Sep nach 94104 bei heutigem Zahlungseingang
Rücknahme:
30 Tage Rückgabe. Kostenloser Rückversand.
Zahlungen:
Sicher einkaufen
- Gratis Rückversand im Inland
- Punkte für jeden Kauf und Verkauf
- Exklusive Plus-Deals
Der Verkäufer ist für dieses Angebot verantwortlich.
eBay-Artikelnr.:404431034811
Artikelmerkmale
- Artikelzustand
- Book Title
- Understanding Machine Learning
- ISBN
- 9781107057135
Über dieses Produkt
Product Identifiers
Publisher
Cambridge University Press
ISBN-10
1107057132
ISBN-13
9781107057135
eBay Product ID (ePID)
171820749
Product Key Features
Number of Pages
410 Pages
Publication Name
Understanding Machine Learning : from Theory to Algorithms
Language
English
Publication Year
2014
Subject
Algebra / General, Computer Vision & Pattern Recognition
Type
Textbook
Subject Area
Mathematics, Computers
Format
Hardcover
Dimensions
Item Height
1.1 in
Item Weight
32.2 Oz
Item Length
10.2 in
Item Width
7.2 in
Additional Product Features
Intended Audience
Scholarly & Professional
LCCN
2014-001779
Reviews
Advance praise: 'This elegant book covers both rigorous theory and practical methods of machine learning. This makes it a rather unique resource, ideal for all those who want to understand how to find structure in data.' Bernhard Schölkopf, Max Planck Institute for Intelligent Systems, "This elegant book covers both rigorous theory and practical methods of machine learning. This makes it a rather unique resource, ideal for all those who want to understand how to find structure in data." Bernhard Schlkopf, Max Planck Institute for Intelligent Systems
Dewey Edition
23
Illustrated
Yes
Dewey Decimal
006.3/1
Table Of Content
1. Introduction; Part I. Foundations: 2. A gentle start; 3. A formal learning model; 4. Learning via uniform convergence; 5. The bias-complexity trade-off; 6. The VC-dimension; 7. Non-uniform learnability; 8. The runtime of learning; Part II. From Theory to Algorithms: 9. Linear predictors; 10. Boosting; 11. Model selection and validation; 12. Convex learning problems; 13. Regularization and stability; 14. Stochastic gradient descent; 15. Support vector machines; 16. Kernel methods; 17. Multiclass, ranking, and complex prediction problems; 18. Decision trees; 19. Nearest neighbor; 20. Neural networks; Part III. Additional Learning Models: 21. Online learning; 22. Clustering; 23. Dimensionality reduction; 24. Generative models; 25. Feature selection and generation; Part IV. Advanced Theory: 26. Rademacher complexities; 27. Covering numbers; 28. Proof of the fundamental theorem of learning theory; 29. Multiclass learnability; 30. Compression bounds; 31. PAC-Bayes; Appendix A. Technical lemmas; Appendix B. Measure concentration; Appendix C. Linear algebra.
Synopsis
Machine learning is one of the fastest growing areas of computer science, with far-reaching applications. The aim of this textbook is to introduce machine learning, and the algorithmic paradigms it offers, in a principled way. The book provides an extensive theoretical account of the fundamental ideas underlying machine learning and the mathematical derivations that transform these principles into practical algorithms. Following a presentation of the basics of the field, the book covers a wide array of central topics that have not been addressed by previous textbooks. These include a discussion of the computational complexity of learning and the concepts of convexity and stability; important algorithmic paradigms including stochastic gradient descent, neural networks, and structured output learning; and emerging theoretical concepts such as the PAC-Bayes approach and compression-based bounds. Designed for an advanced undergraduate or beginning graduate course, the text makes the fundamentals and algorithms of machine learning accessible to students and non-expert readers in statistics, computer science, mathematics, and engineering., Machine learning is one of the fastest growing areas of computer science, with far-reaching applications. The aim of this textbook is to introduce machine learning, and the algorithmic paradigms it offers, in a principled way. The book provides a theoretical account of the fundamentals underlying machine learning and the mathematical derivations that transform these principles into practical algorithms. Following a presentation of the basics, the book covers a wide array of central topics unaddressed by previous textbooks. These include a discussion of the computational complexity of learning and the concepts of convexity and stability; important algorithmic paradigms including stochastic gradient descent, neural networks, and structured output learning; and emerging theoretical concepts such as the PAC-Bayes approach and compression-based bounds. Designed for advanced undergraduates or beginning graduates, the text makes the fundamentals and algorithms of machine learning accessible to students and non-expert readers in statistics, computer science, mathematics and engineering., Machine learning is one of the fastest growing areas of computer science, with far-reaching applications. This book explains the principles behind the automated learning approach and the considerations underlying its usage. The authors explain the 'hows' and 'whys' of machine-learning algorithms, making the field accessible to both students and practitioners.
LC Classification Number
Q325.5 .S475 2014
Artikelbeschreibung des Verkäufers
Rechtliche Informationen des Verkäufers
Info zu diesem Verkäufer
BooksRun
99,2% positive Bewertungen•875.477 Artikel verkauft
Angemeldet als gewerblicher Verkäufer
Beliebte Kategorien in diesem Shop
Verkäuferbewertungen (180.412)
Dieser Artikel (1)
Alle Artikel (180.412)
- _***c (381)- Bewertung vom Käufer.Letzte 6 MonateBestätigter KaufSmooth transaction, authentic item, happy buyer, A+++ seller!
- c***m (429)- Bewertung vom Käufer.Letzte 6 MonateBestätigter KaufWOW!; I cannot believe this 4 Days to Hawaii! ; AAA+++; Excellent Service; Great Pricing; Fast Delivery-Faster Than Expected to Hawaii!; Shipped 04/19, Sat, Received 04/24 Thur to Hawaii using free shipping; USPS Ground Mail, Paperback Book in Good Condition--Better Than Described ; TLC Packaging; Excellent Seller Communication, Sends updates . Highly Recommended!, Thank you very much!The Great Crash, 1929 - Paperback, by J K Galbraith - Acceptable (Nr. 125958575357)
- _***b (55)- Bewertung vom Käufer.Letzter MonatBestätigter KaufI'm very happy with my purchase. It was an excellent value with free shipping. The condition is as described with a very good appearance and overall quality. The seller replied to my email and it arrived in 4 days!! I highly recommend this seller and give them 👍👍👍👍
- f***f (1604)- Bewertung vom Käufer.Letzte 6 MonateBestätigter KaufExcellent Seller, Goes the Extra Mile. The Seller Was Incredibly Communicative. Smooth Transaction, Shipped Very Quickly, As Advertised; Good Price; Well Packaged & Delivered Within a Few Days. Item in Described Promised Condition, Thank You Very Much!!!!!!!!!!! A+
Produktbewertungen & Rezensionen
Relevanteste Rezensionen
- 09. Sep. 2017
Valuable book
Bestätigter Kauf: JaZustand: NeuVerkauft von: dunkin_bookstore
Noch mehr entdecken:
- Romane & Erzählungen für Kinder & Jugendliche mit Gute-Nacht-Geschichten & Kinderreimen,
- Gute-Nacht-Geschichten - & -Kinderreime-Belletristik Disney Bücher,
- Gute-Nacht-Geschichten - & -Kinderreime-Belletristik Bücher Mädcheninteresse,
- Gute-Nacht-Geschichten - & -Kinderreime-Belletristik Bücher Freundschaft,
- Gute-Nacht-Geschichten - & -Kinderreime-Belletristik-Bücher auf Deutsch,
- Gute-Nacht-Geschichten - & -Kinderreime-Belletristik - 4-8 - Jahre Bücher,
- 9-12 Jahre Gute-Nacht-Geschichten - & -Kinderreime-Belletristik-Bücher,
- Romane & Erzählungen für Kinder & Jugendliche Jugendliche mit Gute-Nacht-Geschichten & Kinderreimen,
- Gute-Nacht-Geschichten - & -Kinderreime-Belletristik-Unter - 2-Jahre Bücher,
- Romane & Erzählungen für Kinder & Jugendliche mit Gute-Nacht-Geschichten & Kinderreimen Erstes Lesen