Probabilistische grafische Modelle: Prinzipien und, Koller, Friedman...-

Ursprünglicher Text
Probabilistic Graphical Models: Principles and , Koller, Friedman..
Awesomebooksusa
(450115)
Angemeldet als gewerblicher Verkäufer
US $159,17
Ca.EUR 136,99
Artikelzustand:
Neu
2 verfügbar
Ganz entspannt. Rückgaben akzeptiert.
Versand:
Kostenlos USPS Media MailTM.
Standort: MD, USA
Lieferung:
Lieferung zwischen Fr, 17. Okt und Do, 23. Okt nach 94104 bei heutigem Zahlungseingang
Liefertermine - wird in neuem Fenster oder Tab geöffnet berücksichtigen die Bearbeitungszeit des Verkäufers, die PLZ des Artikelstandorts und des Zielorts sowie den Annahmezeitpunkt und sind abhängig vom gewählten Versandservice und dem ZahlungseingangZahlungseingang - wird ein neuem Fenster oder Tab geöffnet. Insbesondere während saisonaler Spitzenzeiten können die Lieferzeiten abweichen.
Rücknahme:
30 Tage Rückgabe. Käufer zahlt Rückversand. Wenn Sie ein eBay-Versandetikett verwenden, werden die Kosten dafür von Ihrer Rückerstattung abgezogen.
Zahlungen:
   Diners Club 

Sicher einkaufen

eBay-Käuferschutz
Geld zurück, wenn etwas mit diesem Artikel nicht stimmt. Mehr erfahreneBay-Käuferschutz - wird in neuem Fenster oder Tab geöffnet

  • Gratis Rückversand im Inland
  • Punkte für jeden Kauf und Verkauf
  • Exklusive Plus-Deals
Der Verkäufer ist für dieses Angebot verantwortlich.
eBay-Artikelnr.:333717965527
Zuletzt aktualisiert am 09. Okt. 2025 15:42:55 MESZAlle Änderungen ansehenAlle Änderungen ansehen

Artikelmerkmale

Artikelzustand
Neu: Neues, ungelesenes, ungebrauchtes Buch in makellosem Zustand ohne fehlende oder beschädigte ...
Title
Probabilistic Graphical Models: Principles and Techniques (Adapt
Artist
Not Specified
ISBN
9780262013192
Kategorie

Über dieses Produkt

Product Identifiers

Publisher
MIT Press
ISBN-10
0262013193
ISBN-13
9780262013192
eBay Product ID (ePID)
73169822

Product Key Features

Number of Pages
1270 Pages
Publication Name
Probabilistic Graphical Models : Principles and Techniques
Language
English
Publication Year
2009
Subject
Programming / Algorithms, Intelligence (Ai) & Semantics, Probability & Statistics / Bayesian Analysis
Type
Textbook
Subject Area
Mathematics, Computers
Author
Daphne Koller
Series
Adaptive Computation and Machine Learning Ser.
Format
Hardcover

Dimensions

Item Height
2 in
Item Weight
78 Oz
Item Length
9.4 in
Item Width
8.3 in

Additional Product Features

Intended Audience
Trade
LCCN
2009-008615
Dewey Edition
22
Reviews
"This landmark book provides a very extensive coverage of the field, ranging from basic representational issues to the latest techniques for approximate inference and learning. As such, it is likely to become a definitive reference for all those who work in this area. Detailed worked examples and case studies also make the book accessible to students." -Kevin Murphy, Department of Computer Science, University of British Columbia
Illustrated
Yes
Dewey Decimal
519.5/420285
Synopsis
A general framework for constructing and using probabilistic models of complex systems that would enable a computer to use available information for making decisions., A general framework for constructing and using probabilistic models of complex systems that would enable a computer to use available information for making decisions. Most tasks require a person or an automated system to reason-to reach conclusions based on available information. The framework of probabilistic graphical models, presented in this book, provides a general approach for this task. The approach is model-based, allowing interpretable models to be constructed and then manipulated by reasoning algorithms. These models can also be learned automatically from data, allowing the approach to be used in cases where manually constructing a model is difficult or even impossible. Because uncertainty is an inescapable aspect of most real-world applications, the book focuses on probabilistic models, which make the uncertainty explicit and provide models that are more faithful to reality. Probabilistic Graphical Models discusses a variety of models, spanning Bayesian networks, undirected Markov networks, discrete and continuous models, and extensions to deal with dynamical systems and relational data. For each class of models, the text describes the three fundamental cornerstones- representation, inference, and learning, presenting both basic concepts and advanced techniques. Finally, the book considers the use of the proposed framework for causal reasoning and decision making under uncertainty. The main text in each chapter provides the detailed technical development of the key ideas. Most chapters also include boxes with additional material- skill boxes, which describe techniques; case study boxes, which discuss empirical cases related to the approach described in the text, including applications in computer vision, robotics, natural language understanding, and computational biology; and concept boxes, which present significant concepts drawn from the material in the chapter. Instructors (and readers) can group chapters in various combinations, from core topics to more technically advanced material, to suit their particular needs., A general framework for constructing and using probabilistic models of complex systems that would enable a computer to use available information for making decisions. Most tasks require a person or an automated system to reason--to reach conclusions based on available information. The framework of probabilistic graphical models, presented in this book, provides a general approach for this task. The approach is model-based, allowing interpretable models to be constructed and then manipulated by reasoning algorithms. These models can also be learned automatically from data, allowing the approach to be used in cases where manually constructing a model is difficult or even impossible. Because uncertainty is an inescapable aspect of most real-world applications, the book focuses on probabilistic models, which make the uncertainty explicit and provide models that are more faithful to reality. Probabilistic Graphical Models discusses a variety of models, spanning Bayesian networks, undirected Markov networks, discrete and continuous models, and extensions to deal with dynamical systems and relational data. For each class of models, the text describes the three fundamental cornerstones: representation, inference, and learning, presenting both basic concepts and advanced techniques. Finally, the book considers the use of the proposed framework for causal reasoning and decision making under uncertainty. The main text in each chapter provides the detailed technical development of the key ideas. Most chapters also include boxes with additional material: skill boxes, which describe techniques; case study boxes, which discuss empirical cases related to the approach described in the text, including applications in computer vision, robotics, natural language understanding, and computational biology; and concept boxes, which present significant concepts drawn from the material in the chapter. Instructors (and readers) can group chapters in various combinations, from core topics to more technically advanced material, to suit their particular needs.
LC Classification Number
QA279.5.K65 2010

Artikelbeschreibung des Verkäufers

Rechtliche Informationen des Verkäufers

Ich versichere, dass alle meine Verkaufsaktivitäten in Übereinstimmung mit allen geltenden Gesetzen und Vorschriften der EU erfolgen.
USt-IdNr.: GB 724498118
CRN: 03800600

Informationen zur Produktsicherheit und Barrierefreiheit

Info zu diesem Verkäufer

Awesomebooksusa

98,3% positive Bewertungen1,4 Mio. Artikel verkauft

Mitglied seit Mär 2009
Antwortet meist innerhalb 24 Stunden
Angemeldet als gewerblicher Verkäufer
Shop besuchenKontakt

Detaillierte Verkäuferbewertungen

Durchschnitt in den letzten 12 Monaten
Genaue Beschreibung
4.8
Angemessene Versandkosten
5.0
Lieferzeit
5.0
Kommunikation
5.0

Beliebte Kategorien in diesem Shop

Verkäuferbewertungen (556.843)

Alle Bewertungenselected
Positiv
Neutral
Negativ
  • 7***e (33)- Bewertung vom Käufer.
    Letzter Monat
    Bestätigter Kauf
    Amazing price and super fast shipping. Book arrived exactly as described in the correct box meant to ship books. No bumps or dings in the corner because of the attention to packaging. I'll keep an eye on this seller for another purchase. Highly recommend this seller!!!!
  • 5***w (1174)- Bewertung vom Käufer.
    Letzter Monat
    Bestätigter Kauf
    The book that was shown was not the book that I received. Nonetheless, when I informed the seller that it wasn't the item they advertised-/they were more than willing to make it right. Since they didn't have another copy of the title I was expecting, they promptly issued an apology; and refund full refund. I really appreciated the speed at which they were willing to make things right with this transaction. I will definitely not hesitate to do business with them again. Thank You!
  • f***f (1624)- Bewertung vom Käufer.
    Letzte 6 Monate
    Bestätigter Kauf
    Excellent Seller, Goes the Extra Mile. The Seller Was Incredibly Communicative. Smooth Transaction, Shipped Very Quickly, As Advertised; Good Price; Well Packaged & Delivered Within a Few Days. Item in Described Promised Condition, Thank You Very Much!!!!!!!!!!! A+

Produktbewertungen & Rezensionen

5.0
1 Produktbewertungen
  • 1 Nutzer bewerten dieses Produkt mit 5 von 5 Sternen
  • 0 Nutzer bewerten dieses Produkt mit 4 von 5 Sternen
  • 0 Nutzer bewerten dieses Produkt mit 3 von 5 Sternen
  • 0 Nutzer bewerten dieses Produkt mit 2 von 5 Sternen
  • 0 Nutzer bewerten dieses Produkt mit 1 von 5 Sternen

Would recommend

Good value

Compelling content

Relevanteste Rezensionen

  • Excellent summary of research and practice

    Very thorough.

    Bestätigter Kauf: JaZustand: GebrauchtVerkauft von: closingbellauctions