3D Deep Learning mit Python: Entwerfen und entwickeln Sie Ihr Computer Vision Modell...-

Ursprünglicher Text
3D Deep Learning with Python: Design and develop your computer vision model ...
Goodwill of Silicon Valley Books
(184494)
Angemeldet als gewerblicher Verkäufer
US $31,79
Ca.EUR 27,09
Artikelzustand:
Gut
Ganz entspannt. Rückgaben akzeptiert.
Versand:
Kostenlos Standard Shipping.
Standort: San Jose, California, USA
Lieferung:
Lieferung zwischen Mi, 17. Sep und Sa, 20. Sep nach 94104 bei heutigem Zahlungseingang
Wir wenden ein spezielles Verfahren zur Einschätzung des Liefertermins an – in diese Schätzung fließen Faktoren wie die Entfernung des Käufers zum Artikelstandort, der gewählte Versandservice, die bisher versandten Artikel des Verkäufers und weitere ein. Insbesondere während saisonaler Spitzenzeiten können die Lieferzeiten abweichen.
Rücknahme:
30 Tage Rückgabe. Käufer zahlt Rückversand. Wenn Sie ein eBay-Versandetikett verwenden, werden die Kosten dafür von Ihrer Rückerstattung abgezogen.
Zahlungen:
   Diners Club 

Sicher einkaufen

eBay-Käuferschutz
Geld zurück, wenn etwas mit diesem Artikel nicht stimmt. Mehr erfahreneBay-Käuferschutz - wird in neuem Fenster oder Tab geöffnet

  • Gratis Rückversand im Inland
  • Punkte für jeden Kauf und Verkauf
  • Exklusive Plus-Deals
Der Verkäufer ist für dieses Angebot verantwortlich.
eBay-Artikelnr.:286800776945
Zuletzt aktualisiert am 14. Sep. 2025 18:13:02 MESZAlle Änderungen ansehenAlle Änderungen ansehen

Artikelmerkmale

Artikelzustand
Gut: Buch, das gelesen wurde, sich aber in einem guten Zustand befindet. Der Einband weist nur sehr ...
Release Year
2022
Book Title
3D Deep Learning with Python: Design and develop your computer...
ISBN
9781803247823
Kategorie

Über dieses Produkt

Product Identifiers

Publisher
Packt Publishing, The Limited
ISBN-10
1803247827
ISBN-13
9781803247823
eBay Product ID (ePID)
2329415985

Product Key Features

Number of Pages
236 Pages
Language
English
Publication Name
3D Deep Learning with Python : Design and Develop Your Computer Vision Model with 3D Data Using PyTorch3D and More
Subject
Machine Theory, Intelligence (Ai) & Semantics, Neural Networks
Publication Year
2022
Type
Textbook
Author
Lilit Yolyan, Xudong Ma, Vishakh Hegde
Subject Area
Computers
Format
Trade Paperback

Dimensions

Item Length
3.6 in
Item Width
3 in

Additional Product Features

Intended Audience
Trade
Dewey Edition
23
Dewey Decimal
006.693
Table Of Content
Table of Contents 3D data file formats - ply and obj, 3D coordination systems, camera models Basic rendering concepts, basic PyTorch optimization, heterogeneous batching Fitting using deformable mesh models Differentiable rendering basic concepts Differentiable volume rendering NeRF - Neural Radiance Fields GIRAFFE Human body 3D fitting using SMPL models Synsin - end-to-end view synthesis from a single image Mesh RCNN
Synopsis
Visualize and build deep learning models with 3D data using PyTorch3D and other Python frameworks to conquer real-world application challenges with ease Key Features: Understand 3D data processing with rendering, PyTorch optimization, and heterogeneous batching Implement differentiable rendering concepts with practical examples Discover how you can ease your work with the latest 3D deep learning techniques using PyTorch3D Book Description: With this hands-on guide to 3D deep learning, developers working with 3D computer vision will be able to put their knowledge to work and get up and running in no time. Complete with step-by-step explanations of essential concepts and practical examples, this book lets you explore and gain a thorough understanding of state-of-the-art 3D deep learning. You'll see how to use PyTorch3D for basic 3D mesh and point cloud data processing, including loading and saving ply and obj files, projecting 3D points into camera coordination using perspective camera models or orthographic camera models, rendering point clouds and meshes to images, and much more. As you implement some of the latest 3D deep learning algorithms, such as differential rendering, Nerf, synsin, and mesh RCNN, you'll realize how coding for these deep learning models becomes easier using the PyTorch3D library. By the end of this deep learning book, you'll be ready to implement your own 3D deep learning models confidently. What You Will Learn: Develop 3D computer vision models for interacting with the environment Get to grips with 3D data handling with point clouds, meshes, ply, and obj file format Work with 3D geometry, camera models, and coordination and convert between them Understand concepts of rendering, shading, and more with ease Implement differential rendering for many 3D deep learning models Advanced state-of-the-art 3D deep learning models like Nerf, synsin, mesh RCNN Who this book is for: This book is for beginner to intermediate-level machine learning practitioners, data scientists, ML engineers, and DL engineers who are looking to become well-versed with computer vision techniques using 3D data., Visualize and build deep learning models with 3D data using PyTorch3D and other Python frameworks to conquer real-world application challenges with ease Key Features Understand 3D data processing with rendering, PyTorch optimization, and heterogeneous batching Implement differentiable rendering concepts with practical examples Discover how you can ease your work with the latest 3D deep learning techniques using PyTorch3D Book Description With this hands-on guide to 3D deep learning, developers working with 3D computer vision will be able to put their knowledge to work and get up and running in no time. Complete with step-by-step explanations of essential concepts and practical examples, this book lets you explore and gain a thorough understanding of state-of-the-art 3D deep learning. You'll see how to use PyTorch3D for basic 3D mesh and point cloud data processing, including loading and saving ply and obj files, projecting 3D points into camera coordination using perspective camera models or orthographic camera models, rendering point clouds and meshes to images, and much more. As you implement some of the latest 3D deep learning algorithms, such as differential rendering, Nerf, synsin, and mesh RCNN, you'll realize how coding for these deep learning models becomes easier using the PyTorch3D library. By the end of this deep learning book, you'll be ready to implement your own 3D deep learning models confidently. What you will learn Develop 3D computer vision models for interacting with the environment Get to grips with 3D data handling with point clouds, meshes, ply, and obj file format Work with 3D geometry, camera models, and coordination and convert between them Understand concepts of rendering, shading, and more with ease Implement differential rendering for many 3D deep learning models Advanced state-of-the-art 3D deep learning models like Nerf, synsin, mesh RCNN Who this book is for This book is for beginner to intermediate-level machine learning practitioners, data scientists, ML engineers, and DL engineers who are looking to become well-versed with computer vision techniques using 3D data., This practical guide to 3D deep learning will help you learn everything you need to know about 3D computer vision models and how to incorporate them into your day-to-day work. The book covers top methods and frameworks to demonstrate how 3D data can be processed and help you gain the confidence to implement your own 3D deep learning models.

Artikelbeschreibung des Verkäufers

Rechtliche Informationen des Verkäufers

Ich versichere, dass alle meine Verkaufsaktivitäten in Übereinstimmung mit allen geltenden Gesetzen und Vorschriften der EU erfolgen.
Info zu diesem Verkäufer

Goodwill of Silicon Valley Books

98,7% positive Bewertungen586.698 Artikel verkauft

Mitglied seit Nov 2012
Angemeldet als gewerblicher Verkäufer
Founded in Santa Clara County in 1928, Goodwill of Silicon Valley is dedicated to improving employment opportunities, increasing standards of living, providing economic independence, and restoring our ...
Mehr anzeigen
Shop besuchenKontakt

Detaillierte Verkäuferbewertungen

Durchschnitt in den letzten 12 Monaten
Genaue Beschreibung
4.9
Angemessene Versandkosten
5.0
Lieferzeit
5.0
Kommunikation
5.0

Verkäuferbewertungen (198.999)

Alle Bewertungen
Positiv
Neutral
Negativ
  • 1***2 (4)- Bewertung vom Käufer.
    Letzte 6 Monate
    Bestätigter Kauf
    I’m very satisfied with my purchase. Although it did arrive a few days late, it was definitely worth $18 for a densely packed, 1000 paged textbook with lots and lots of questions to reinforce your understanding. In terms of the seller and the condition of the book, the seller was very truthful in their description, and marked the book as “acceptable”. I’ve only explored a fraction of the book, and as far as I’m concerned, the majority is “good”. I’m very happy, it looks great, great quality.
  • b***a (1072)- Bewertung vom Käufer.
    Letzte 6 Monate
    Bestätigter Kauf
    Sorry to have to return the book, but the listing appeared as if the 5 vol set of books was listed. I only received vol. 1. Requested a refund and seller sent return slip immediately and issued a complete refund. I would feel comfortable buying from this seller again.
  • r***7 (4270)- Bewertung vom Käufer.
    Letzter Monat
    Bestätigter Kauf
    Book that was received had loose and missing pages and fell short of the described condition. Seller responded quickly to this concern and the suggested resolution was much better than hoped for. This was clearly an honest mistake and I highly recommend this seller as honest and professional. A++ seller!