Bild 1 von 11











Galerie
Bild 1 von 11











Course in Probability by Neil Weiss (2005, Trade Paperback)
US $65,00
Ca.EUR 55,34
Artikelzustand:
“white stickers on front and back covers, likely to cover up mention of being a review copy.....clean ”... Mehr erfahrenÜber den Artikelzustand
Akzeptabel
Buch mit deutlichen Gebrauchsspuren. Der Einband kann einige Beschädigungen aufweisen, ist aber in seiner Gesamtheit noch intakt. Die Bindung ist möglicherweise leicht beschädigt, in ihrer Gesamtheit aber noch intakt. In den Randbereichen wurden evtl. Notizen gemacht, der Text kann Unterstreichungen und Markierungen enthalten, es fehlen aber keine Seiten und es ist alles vorhanden, was für die Lesbarkeit oder das Verständnis des Textes notwendig ist. Genauere Einzelheiten sowie eine Beschreibung eventueller Mängel entnehmen Sie bitte dem Angebot des Verkäufers.
Oops! Looks like we're having trouble connecting to our server.
Refresh your browser window to try again.
Versand:
US $5,00 (ca. EUR 4,26) USPS Media MailTM.
Standort: Ottumwa, Iowa, USA
Lieferung:
Lieferung zwischen Mi, 24. Sep und Mo, 29. Sep nach 94104 bei heutigem Zahlungseingang
Rücknahme:
14 Tage Rückgabe. Käufer zahlt Rückversand. Wenn Sie ein eBay-Versandetikett verwenden, werden die Kosten dafür von Ihrer Rückerstattung abgezogen.
Zahlungen:
Sicher einkaufen
- Gratis Rückversand im Inland
- Punkte für jeden Kauf und Verkauf
- Exklusive Plus-Deals
Der Verkäufer ist für dieses Angebot verantwortlich.
eBay-Artikelnr.:286788227337
Artikelmerkmale
- Artikelzustand
- Akzeptabel
- Hinweise des Verkäufers
- ISBN
- 9780201774719
Über dieses Produkt
Product Identifiers
Publisher
Pearson Education
ISBN-10
0201774712
ISBN-13
9780201774719
eBay Product ID (ePID)
43559898
Product Key Features
Number of Pages
816 Pages
Language
English
Publication Name
Course in Probability
Subject
Probability & Statistics / General
Publication Year
2005
Type
Textbook
Subject Area
Mathematics
Format
Trade Paperback
Dimensions
Item Height
1.9 in
Item Weight
56 Oz
Item Length
9.4 in
Item Width
7.7 in
Additional Product Features
Intended Audience
College Audience
LCCN
2004-051068
Dewey Edition
22
TitleLeading
A
Illustrated
Yes
Dewey Decimal
519.2
Table Of Content
( Chapter Opener and Review appear in each chapter ). I. FUNDAMENTALS OF PROBABILITY. 1. Probability Basics. Biography: Girolamo Cardano. From Percentages to Probabilities. Set Theory. 2. Mathematical Probability. Biography: Andrei Kolmogorov. Sample Space and Events. Axioms of Probability. Specifying Probabilities. Basic Properties of Probability. 3. Combinatorial Probability. Biography: James Bernoulli. The Basic Counting Rule. Permutations and Combinations. Applications of Counting Rules to Probability. 4. Conditional Probability and Independence. Biography: Thomas Bayes. Conditional Probability. The General Multiplication Rule. Independent Events. Bayes'' Rule. II. DISCRETE RANDOM VARIABLES. 5. Discrete Random Variables and Their Distributions. Biography: Siméon-Dennis Poisson. From Variables to Random Variables. Probability Mass Functions. Binomial Random Variables. Hypergeometric Random Variables. Poisson Random Variables. Geometric Random Variables. Other Important Discrete Random Variables. Functions of a Discrete Random Variable. 6. Jointly Discrete Random Variables. Biography: Blaise Pascal. Joint and Marginal Probability Mass Functions: Bivariate Case. Joint and Marginal Probability Mass Functions: Multivariate Case. Conditional Probability Mass Functions. Independent Random Variables. Functions of Two or More Discrete Random Variables. Sums of Discrete Random Variables. 7. Expected Value of Discrete Random Variables. Biography: Christiaan Huygens. From Averages to Expected Values. Basic Properties of Expected Value. Variance of Discrete Random Variables. Variance, Covariance, and Correlation. Conditional Expectation. III. CONTINUOUS RANDOM VARIABLES. 8. Continuous Random Variables and Their Distributions. Biography: Carl Friedrich Gauss. Introducing Continuous Random Variables. Cumulative Distribution Functions. Probability Density Functions. Uniform and Exponential Random Variables. Normal Random Variables. Other Important Continuous Random Variables. Functions of a Continuous Random Variable. 9. Jointly Continuous Random Variables. Biography: Pierre de Fermat. Joint Cumulative Distribution Functions. Introducing Joint Probability Density Functions. Basic Properties of Joint Probability Density Functions. Marginal and Conditional Probability Density Functions. Independent Continuous Random Variables. Functions of Two or More Continuous Random Variables. Sums and Quotients of Continuous Random Variables. Multidimensional Transformation Theorem. 10. Expected Value of Continuous Random Variables. Biography: Pafnuty Chebyshev. Expected Value of a Continuous Random Variable. Basic Properties of Expected Value. Variance, Covariance, and Correlation. Conditional Expectation. The Bivariate Normal Distribution. IV. LIMIT THEOREMS AND ADVANCED TOPICS. 11. Generating Functions and Limit Theorems. Biography: William Feller. Moment Generating Functions. Joint Moment Generating Functions. Laws of Large Numbers. The Central Limit Theorem. 12. Additional Topics. Biography: Sir Ronald Fisher. The Poisson Process. Basic Queueing Theory. The Multivariate Normal Distribution. Sampling Distributions. Appendices. Index.
Synopsis
This text is intended primarily for a first course in mathematical probability for students in mathematics, statistics, operations research, engineering, and computer science. It is also appropriate for mathematically oriented students in the physical and social sciences. Prerequisite material consists of basic set theory and a firm foundation in elementary calculus, including infinite series, partial differentiation, and multiple integration. Some exposure to rudimentary linear algebra (e.g., matrices and determinants) is also desirable. This text includes pedagogical techniques not often found in books at this level, in order to make the learning process smooth, efficient, and enjoyable., This text is intended primarily for readers interested in mathematical probability as applied to mathematics, statistics, operations research, engineering, and computer science. It is also appropriate for mathematically oriented readers in the physical and social sciences. Prerequisite material consists of basic set theory and a firm foundation in elementary calculus, including infinite series, partial differentiation, and multiple integration. Some exposure to rudimentary linear algebra (e.g., matrices and determinants) is also desirable. This text includes pedagogical techniques not often found in books at this level, in order to make the learning process smooth, efficient, and enjoyable. Fundamentals of Probability: Probability Basics. Mathematical Probability. Combinatorial Probability. Conditional Probability and Independence. Discrete Random Variables: Discrete Random Variables and Their Distributions. Jointly Discrete Random Variables. Expected Value of Discrete Random Variables. Continuous Random Variables: Continuous Random Variables and Their Distributions. Jointly Continuous Random Variables. Expected Value of Continuous Random Variables. Limit Theorems and Advanced Topics: Generating Functions and Limit Theorems. Additional Topics. For all readers interested in probability., This text is intended primarily for readers interested in mathematical probability as applied to mathematics, statistics, operations research, engineering, and computer science. It is also appropriate for mathematically oriented readers in the physical and social sciences. Prerequisite material consists of basic set theory and a firm foundation in elementary calculus, including infinite series, partial differentiation, and multiple integration. Some exposure to rudimentary linear algebra (e.g., matrices and determinants) is also desirable. This text includes pedagogical techniques not often found in books at this level, in order to make the learning process smooth, efficient, and enjoyable. KEY TOPICS: Fundamentals of Probability: Probability Basics. Mathematical Probability. Combinatorial Probability. Conditional Probability and Independence. Discrete Random Variables: Discrete Random Variables and Their Distributions. Jointly Discrete Random Variables. Expected Value of Discrete Random Variables. Continuous Random Variables: Continuous Random Variables and Their Distributions. Jointly Continuous Random Variables. Expected Value of Continuous Random Variables. Limit Theorems and Advanced Topics: Generating Functions and Limit Theorems. Additional Topics. MARKET: For all readers interested in probability.
LC Classification Number
QA273.W425 2005
Artikelbeschreibung des Verkäufers
Info zu diesem Verkäufer
ozarkjoe
100% positive Bewertungen•5.502 Artikel verkauft
Angemeldet als privater VerkäuferDaher finden verbraucherschützende Vorschriften, die sich aus dem EU-Verbraucherrecht ergeben, keine Anwendung. Der eBay-Käuferschutz gilt dennoch für die meisten Käufe. Mehr erfahrenMehr erfahren
Verkäuferbewertungen (2.182)
- 2***k (52)- Bewertung vom Käufer.Letzte 6 MonateBestätigter KaufThe books were exactly as described and were well packaged. They were a good value compared to other sellers. Shipping was very quick. Would definitely buy from this seller again.
- h***t (401)- Bewertung vom Käufer.Letzter MonatBestätigter Kauffast shipping, item as described, well packaged -- highly recommended seller!
- o***s (4484)- Bewertung vom Käufer.Letzte 6 MonateBestätigter KaufExcellent seller, exactly as described, packaged up well and fast delivery!
Noch mehr entdecken:
- Hörbücher und Hörspiele Neil Gaiman,
- Neil Gaiman Hörbücher auf Deutsch,
- Sachbuch Neil Gaiman Bücher,
- Neil Gaiman Studium und Erwachsenenbildung,
- Neil Gaiman Belletristik-Bücher,
- Deutsche Studium und Erwachsenenbildung Neil Gaiman,
- Neil Gaiman Fachbücher, Lernen und Nachschlagen,
- Bücher mit Kinder- & Jugendliteratur Neil Gaiman,
- Neil-Gaiman-Humor-Belletristik - Bücher,
- Deutsche Bücher Neil Gaiman Belletristik