Dieser Artikel ist nicht mehr vorrätig.

Moderne Grafiktheorie-Algorithmen mit Python: Nutzen Sie die Kraft der Grafik: Neu-

Ursprünglicher Text
Modern Graph Theory Algorithms with Python: Harness the power of graph: New
AlibrisBooks
(469578)
Angemeldet als gewerblicher Verkäufer
US $48,92
Ca.EUR 41,69
Artikelzustand:
Neu
Versand:
Kostenlos Standard Shipping.
Standort: Sparks, Nevada, USA
Lieferung:
Lieferung zwischen Fr, 19. Sep und Do, 25. Sep nach 94104 bei heutigem Zahlungseingang
Liefertermine - wird in neuem Fenster oder Tab geöffnet berücksichtigen die Bearbeitungszeit des Verkäufers, die PLZ des Artikelstandorts und des Zielorts sowie den Annahmezeitpunkt und sind abhängig vom gewählten Versandservice und dem ZahlungseingangZahlungseingang - wird ein neuem Fenster oder Tab geöffnet. Insbesondere während saisonaler Spitzenzeiten können die Lieferzeiten abweichen.
Rücknahme:
30 Tage Rückgabe. Käufer zahlt Rückversand. Wenn Sie ein eBay-Versandetikett verwenden, werden die Kosten dafür von Ihrer Rückerstattung abgezogen.
Zahlungen:
   Diners Club 

Sicher einkaufen

eBay-Käuferschutz
Geld zurück, wenn etwas mit diesem Artikel nicht stimmt. Mehr erfahreneBay-Käuferschutz - wird in neuem Fenster oder Tab geöffnet

  • Gratis Rückversand im Inland
  • Punkte für jeden Kauf und Verkauf
  • Exklusive Plus-Deals
Der Verkäufer ist für dieses Angebot verantwortlich.
eBay-Artikelnr.:285933570588
Zuletzt aktualisiert am 13. Sep. 2025 09:22:14 MESZAlle Änderungen ansehenAlle Änderungen ansehen

Artikelmerkmale

Artikelzustand
Neu: Neues, ungelesenes, ungebrauchtes Buch in makellosem Zustand ohne fehlende oder beschädigte ...
Book Title
Modern Graph Theory Algorithms with Python: Harness the power of
Publication Date
2024-06-07
ISBN
9781805127895
Kategorie

Über dieses Produkt

Product Identifiers

Publisher
Packt Publishing, The Limited
ISBN-10
1805127896
ISBN-13
9781805127895
eBay Product ID (ePID)
2339318937

Product Key Features

Publication Name
Modern Graph Theory Algorithms with Python : Harness the Power of Graph Algorithms and Real-World Network Applications Using Python
Language
English
Publication Year
2024
Subject
Machine Theory, Intelligence (Ai) & Semantics, General, Programming Languages / Python
Type
Textbook
Subject Area
Mathematics, Computers
Author
Colleen M. Farrelly, Franck Kalala Mutombo
Format
Trade Paperback

Dimensions

Item Length
92.5 in
Item Width
75 in

Additional Product Features

Intended Audience
Trade
Dewey Edition
23
Dewey Decimal
511.5
Synopsis
Solve challenging and computationally intensive analytics problems by leveraging network science and graph algorithms Key Features Learn how to wrangle different types of datasets and analytics problems into networks Leverage graph theoretic algorithms to analyze data efficiently Apply the skills you gain to solve a variety of problems through case studies in Python Purchase of the print or Kindle book includes a free PDF eBook Book Description We are living in the age of big data, and scalable solutions are a necessity. Network science leverages the power of graph theory and flexible data structures to analyze big data at scale.This book guides you through the basics of network science, showing you how to wrangle different types of data (such as spatial and time series data) into network structures. You'll be introduced to core tools from network science to analyze real-world case studies in Python. As you progress, you'll find out how to predict fake news spread, track pricing patterns in local markets, forecast stock market crashes, and stop an epidemic spread. Later, you'll learn about advanced techniques in network science, such as creating and querying graph databases, classifying datasets with graph neural networks (GNNs), and mining educational pathways for insights into student success. Case studies in the book will provide you with end-to-end examples of implementing what you learn in each chapter.By the end of this book, you'll be well-equipped to wrangle your own datasets into network science problems and scale solutions with Python. What you will learn Transform different data types, such as spatial data, into network formats Explore common network science tools in Python Discover how geometry impacts spreading processes on networks Implement machine learning algorithms on network data features Build and query graph databases Explore new frontiers in network science such as quantum algorithms Who this book is for If you're a researcher or industry professional analyzing data and are curious about network science approaches to data, this book is for you. To get the most out of the book, basic knowledge of Python, including pandas and NumPy, as well as some experience working with datasets is required. This book is also ideal for anyone interested in network science and learning how graph algorithms are used to solve science and engineering problems. R programmers may also find this book helpful as many algorithms also have R implementations. ]]>, Solve challenging and computationally intensive analytics problems by leveraging network science and graph algorithms Key Features - Learn how to wrangle different types of datasets and analytics problems into networks - Leverage graph theoretic algorithms to analyze data efficiently - Apply the skills you gain to solve a variety of problems through case studies in Python - Purchase of the print or Kindle book includes a free PDF eBook Book Description We are living in the age of big data, and scalable solutions are a necessity. Network science leverages the power of graph theory and flexible data structures to analyze big data at scale. This book guides you through the basics of network science, showing you how to wrangle different types of data (such as spatial and time series data) into network structures. You'll be introduced to core tools from network science to analyze real-world case studies in Python. As you progress, you'll find out how to predict fake news spread, track pricing patterns in local markets, forecast stock market crashes, and stop an epidemic spread. Later, you'll learn about advanced techniques in network science, such as creating and querying graph databases, classifying datasets with graph neural networks (GNNs), and mining educational pathways for insights into student success. Case studies in the book will provide you with end-to-end examples of implementing what you learn in each chapter. By the end of this book, you'll be well-equipped to wrangle your own datasets into network science problems and scale solutions with Python. What you will learn - Transform different data types, such as spatial data, into network formats - Explore common network science tools in Python - Discover how geometry impacts spreading processes on networks - Implement machine learning algorithms on network data features - Build and query graph databases - Explore new frontiers in network science such as quantum algorithms Who this book is for If you're a researcher or industry professional analyzing data and are curious about network science approaches to data, this book is for you. To get the most out of the book, basic knowledge of Python, including pandas and NumPy, as well as some experience working with datasets is required. This book is also ideal for anyone interested in network science and learning how graph algorithms are used to solve science and engineering problems. R programmers may also find this book helpful as many algorithms also have R implementations. Table of Contents - What is a Network? - Wrangling Data into Networks with NetworkX and igraph - Demographic Data - Transportation Data - Ecological Data - Stock Market Data - Goods Prices/Sales Data - Dynamic Social Networks - Machine Learning for Networks - Pathway Mining - Mapping Language Families - an Ontological Approach - Graph Databases - Putting It All Together - New Frontiers
LC Classification Number
QA166.245.F3 2024

Artikelbeschreibung des Verkäufers

Rechtliche Informationen des Verkäufers

Ich versichere, dass alle meine Verkaufsaktivitäten in Übereinstimmung mit allen geltenden Gesetzen und Vorschriften der EU erfolgen.
Info zu diesem Verkäufer

AlibrisBooks

98,7% positive Bewertungen2,0 Mio. Artikel verkauft

Mitglied seit Mai 2008
Antwortet meist innerhalb 24 Stunden
Angemeldet als gewerblicher Verkäufer
Alibris is the premier online marketplace for independent sellers of new & used books, as well as rare & collectible titles. We connect people who love books to thousands of independent sellers around ...
Mehr anzeigen
Shop besuchenKontakt

Detaillierte Verkäuferbewertungen

Durchschnitt in den letzten 12 Monaten
Genaue Beschreibung
4.9
Angemessene Versandkosten
5.0
Lieferzeit
5.0
Kommunikation
5.0

Verkäuferbewertungen (522.391)

Alle Bewertungen
Positiv
Neutral
Negativ
  • e***n (390)- Bewertung vom Käufer.
    Letzter Monat
    Bestätigter Kauf
    Great transaction, exactly as described, packed well, and promptly shipped on August 6th. Unfortunately the U.S. Postal Service took 23 calendar days to deliver the book. It was shipped from Pennsylvania, to Atlanta, past Alabama to Texas, enjoyed several days in Texas, then to Minneapolis, Jacksonville, Florida, back to Atlanta, finally to Birmingham, and Huntsville. The seller was very responsive and I decided it was interesting to see if/how the book would arrive. Thanks, Joe
  • m***m (2334)- Bewertung vom Käufer.
    Letzte 6 Monate
    Bestätigter Kauf
    I’m thrilled with my recent purchase . The website was user-friendly, and the product descriptions were accurate. Customer service was prompt and helpful, answering all my questions. My order arrived quickly, well-packaged, and the product exceeded my expectations in quality. I’m impressed with the attention to detail and the overall experience. I’ll definitely shop here again and highly recommend from this seller to others. Thank you for a fantastic experience!
  • _***b (57)- Bewertung vom Käufer.
    Letzter Monat
    Bestätigter Kauf
    I gave 5 stars on shipping because i sent 2 separate emails + they responded with helpful info, even though it arrived late. This was a great value with free shipping + the condition is very good, better than advertised 🙂! The overall quality and appearance is excellent! I highly recommend this seller and give them 👍👍👍👍