Mathematical Surveys and Monographs: Vector Measures by Joe Diestel and J. J. Uhl (1977, Trade Paperback)
Über dieses Produkt
Product Identifiers
PublisherAmerican Mathematical Society
ISBN-100821815156
ISBN-139780821815151
eBay Product ID (ePID)701145
Product Key Features
Number of Pages322 Pages
Publication NameVector Measures
LanguageEnglish
Publication Year1977
SubjectFunctional Analysis
FeaturesReprint
TypeTextbook
AuthorJoe Diestel, J. J. Uhl
Subject AreaMathematics
SeriesMathematical Surveys and Monographs
FormatTrade Paperback
Dimensions
Item Height0.7 in
Item Weight21 Oz
Item Length9.9 in
Item Width6.9 in
Additional Product Features
Intended AudienceScholarly & Professional
LCCN77-009625
Series Volume Number15
Edition DescriptionReprint
SynopsisExamines the theory of measures having values in Banach spaces. This book deals with countably additive vector measures finitely additive vector measures, the Orlicz-Pettis theorem and its relatives. It also concentrates on measurable vector valued functions and the Bochner integral., In this survey the authors endeavor to give a comprehensive examination of the theory of measures having values in Banach spaces. The interplay between topological and geometric properties of Banach spaces and the properties of measures having values in Banach spaces is the unifying theme. The first chapter deals with countably additive vector measures finitely additive vector measures, the Orlicz-Pettis theorem and its relatives. Chapter II concentrates on measurable vector valued functions and the Bochner integral. Chapter III begins the study of the interplay among the Radon-Nikodym theorem for vector measures, operators on $L_1$ and topological properties of Banach spaces.A variety of applications is given in the next chapter. Chapter V deals with martingales of Bochner integrable functions and their relation to dentable subsets of Banach spaces. Chapter VI is devoted to a measure-theoretic study of weakly compact absolutely summing and nuclear operators on spaces of continuous functions. In Chapter VII a detailed study of the geometry of Banach spaces with the Radon-Nikodym property is given. The next chapter deals with the use of Radon-Nikodym theorems in the study of tensor products of Banach spaces. The last chapter concludes the survey with a discussion of the Liapounoff convexity theorem and other geometric properties of the range of a vector measure. Accompanying each chapter is an extensive survey of the literature and open problems.