MOMENTAN AUSVERKAUFT

NATO Science Series E: Ser.: On Growth and Form : Fractal and Non-Fractal Patterns in Physics by Nicole Ostrowky (1985, Hardcover)

Über dieses Produkt

Product Identifiers

PublisherSpringer Netherlands
ISBN-109024732344
ISBN-139789024732340
eBay Product ID (ePID)1031208

Product Key Features

Number of PagesX, 310 Pages
LanguageEnglish
Publication NameOn Growth and Form : Fractal and Non-Fractal Patterns in Physics
SubjectChemistry / Physical & Theoretical, Physics / General
Publication Year1985
TypeTextbook
Subject AreaScience
AuthorNicole Ostrowky
SeriesNATO Science Series E: Ser.
FormatHardcover

Dimensions

Item Weight49 Oz
Item Length9.3 in
Item Width6.1 in

Additional Product Features

Intended AudienceScholarly & Professional
LCCN85-018825
Dewey Edition19
Series Volume Number100
Number of Volumes1 vol.
IllustratedYes
Dewey Decimal539/.1
Table Of ContentA. "The Course".- Growth: An Introduction.- Form: An Introduction to Self-Similarity and Fractal Behavior.- Scale-Invariant Diffusive Growth.- DLA in the Real World.- Percolation and Cluster Size Distribution.- Scaling Properties of the Probability Distribution for Growth Sites.- Computer Simulation of Growth and Aggregation Processes.- Rate Equation Approach to Aggregation Phenomena.- Experimental Methods for Studying Fractal Aggregates.- On the Rheology of Random Matter.- Development, Growth, and Form in Living Systems.- B. "The Seminars".- Aggregation of Colloidal Silica.- Dynamics of Fractals.- Fractal Viscous Fingers: Experimental Results.- Wetting Induced Aggregation.- Light Scattering from Aggregating Systems: Static, Dynamic (QELS) and Number Fluctuations.- Flocculation and Gelation in Cluster Aggregation.- Branched Polymers.- Dynamics of Aggregation Processes.- Fractal Properties of Clusters during Spinodal Decomposition.- Kinetic Gelation.- Dendritic Growth by Monte Carlo.- Flow through Porous Materials.- Crack Propagation and Onset of Failure.- The Theta Point.- Field Theories of Walks and Epidemics.- Transport Exponents in Percolation.- Non-Universal Critical Exponents for Transport in Percolating Systems.- Lévy Walks Versus Lévy Flights.- Growth Perimeters Generated by a Kinetic Walk: Butterflies, Ants and Caterpillars.- Asymptotic Shape of Eden Clusters.- Occupation Probability Scaling in DLA.- Fractal Singularities in a Measure and "How to Measure Singularities on a Fractal".- List of Participants.
SynopsisWe have shown that simple power-law dynamics is expected for flexible fractal objects. Although the predicted behavior is well established for linear polymers, the situationm is considerably more complex for colloidal aggregates. In the latter case, the observed K-dependence of (r) can be explained either in terms of non-asymptotic hydrodynamics or in terms of weak power-law polydispersity. In the case of powders (alumina, in particular) apparent fractal behavior seen in static scattering is not found in the dynamics. ID. W. Schaefer, J. E. Martin, P. Wiitzius, and D. S. Cannell, Phys. Rev. Lett. 52,2371 (1984). 2 J. E. Martin and D. W. Schaefer, Phys. Rev. Lett. 5:1,2457 (1984). 3 D. W. Schaefer and C. C. Han in Dynamic Light Scattering, R. Pecora ed, Plenum, NY, 1985) p. 181. 4 P. Sen, this book. S J. E. Martin and B. J. Ackerson, Phys. Rev. A:11, 1180 (1985). 6 J. E. Martin, to be published. 7 D. A. Weitz, J. S. Huang, M. Y. Lin and J. Sung, Phys. Rev. Lett. 53,1657 (1984) . 8 J. E. Martin, D. W. Schaefer and A. J. Hurd, to be published; D. W. Schaefer, K. D. Keefer, J. E. Martin, and A. J. Hurd, in Physics of Finely Divided Matter, M. Daoud, Ed., Springer Verlag, NY, 1985. 9 D. W. Schaefer and A. J. Hurd, to be published. lOJ. E. Martin, J. Appl. Cryst. (to be published)., We have shown that simple power-law dynamics is expected for flexible fractal objects. Although the predicted behavior is well established for linear polymers, the situationm is considerably more complex for colloidal aggregates. In the latter case, the observed K-dependence of (r) can be explained either in terms of non-asymptotic hydrodynamics or in terms of weak power-law polydispersity. In the case of powders (alumina, in particular) apparent fractal behavior seen in static scattering is not found in the dynamics. ID. W. Schaefer, J. E. Martin, P. Wiitzius, and D. S. Cannell, Phys. Rev. Lett. 52,2371 (1984). 2 J. E. Martin and D. W. Schaefer, Phys. Rev. Lett. 5:1,2457 (1984). 3 D. W. Schaefer and C. C. Han in Dynamic Light Scattering, R. Pecora ed, Plenum, NY, 1985) p. 181. 4 P. Sen, this book. S J. E. Martin and B. J. Ackerson, Phys. Rev. A :11, 1180 (1985). 6 J. E. Martin, to be published. 7 D. A. Weitz, J. S. Huang, M. Y. Lin and J. Sung, Phys. Rev. Lett. 53,1657 (1984) . 8 J. E. Martin, D. W. Schaefer and A. J. Hurd, to be published; D. W. Schaefer, K. D. Keefer, J. E. Martin, and A. J. Hurd, in Physics of Finely Divided Matter, M. Daoud, Ed., Springer Verlag, NY, 1985. 9 D. W. Schaefer and A. J. Hurd, to be published. lOJ. E. Martin, J. Appl. Cryst. (to be published).
LC Classification NumberQD450-882