|Eingestellt in Kategorie:

Grundlagen des maschinellen Lernens für Predictive Data Analytics: Algorithmen, Wor-

Ursprünglicher Text
Fundamentals of Machine Learning for Predictive Data Analytics: Algorithms, Wor
nerdssavetheworld
(200)
Angemeldet als gewerblicher Verkäufer
US $14,96
Ca.EUR 12,79
oder Preisvorschlag
Artikelzustand:
Akzeptabel
Ganz entspannt. Rückgaben akzeptiert.
Versand:
US $6,72 (ca. EUR 5,75) USPS Media MailTM.
Standort: Dublin, California, USA
Lieferung:
Lieferung zwischen Mi, 23. Jul und Sa, 26. Jul nach 94104 bei heutigem Zahlungseingang
Wir wenden ein spezielles Verfahren zur Einschätzung des Liefertermins an – in diese Schätzung fließen Faktoren wie die Entfernung des Käufers zum Artikelstandort, der gewählte Versandservice, die bisher versandten Artikel des Verkäufers und weitere ein. Insbesondere während saisonaler Spitzenzeiten können die Lieferzeiten abweichen.
Rücknahme:
30 Tage Rückgabe. Käufer zahlt Rückversand. Wenn Sie ein eBay-Versandetikett verwenden, werden die Kosten dafür von Ihrer Rückerstattung abgezogen.
Zahlungen:
   Diners Club 

Sicher einkaufen

eBay-Käuferschutz
Geld zurück, wenn etwas mit diesem Artikel nicht stimmt. Mehr erfahreneBay-Käuferschutz - wird in neuem Fenster oder Tab geöffnet

  • Gratis Rückversand im Inland
  • Punkte für jeden Kauf und Verkauf
  • Exklusive Plus-Deals
Der Verkäufer ist für dieses Angebot verantwortlich.
eBay-Artikelnr.:205600844551
Zuletzt aktualisiert am 06. Jul. 2025 22:59:38 MESZAlle Änderungen ansehenAlle Änderungen ansehen

Artikelmerkmale

Artikelzustand
Akzeptabel: Buch mit deutlichen Gebrauchsspuren. Der Einband kann einige Beschädigungen aufweisen, ...
Book Title
Fundamentals of Machine Learning for Predictive Data Analytics: A
Narrative Type
Nonfiction
Genre
Specialty Boutique
Topic
Internet & Social Media
Intended Audience
Adult
Inscribed
NO
ISBN
9780262029445

Über dieses Produkt

Product Identifiers

Publisher
MIT Press
ISBN-10
0262029448
ISBN-13
9780262029445
eBay Product ID (ePID)
208620163

Product Key Features

Number of Pages
624 Pages
Publication Name
Fundamentals of Machine Learning for Predictive Data Analytics : Algorithms, Worked Examples, and Case Studies
Language
English
Subject
Probability & Statistics / Stochastic Processes, Intelligence (Ai) & Semantics, Databases / Data Mining
Publication Year
2015
Type
Textbook
Subject Area
Mathematics, Computers
Author
Aoife D'arcy, Brian Mac Namee, John D. Kelleher
Format
Hardcover

Dimensions

Item Height
1.1 in
Item Weight
36.5 Oz
Item Length
9.2 in
Item Width
7.3 in

Additional Product Features

Intended Audience
Trade
LCCN
2014-046123
Dewey Edition
23
Illustrated
Yes
Dewey Decimal
006.3/1
Synopsis
A comprehensive introduction to the most important machine learning approaches used in predictive data analytics, covering both theoretical concepts and practical applications. Machine learning is often used to build predictive models by extracting patterns from large datasets. These models are used in predictive data analytics applications including price prediction, risk assessment, predicting customer behavior, and document classification. This introductory textbook offers a detailed and focused treatment of the most important machine learning approaches used in predictive data analytics, covering both theoretical concepts and practical applications. Technical and mathematical material is augmented with explanatory worked examples, and case studies illustrate the application of these models in the broader business context. After discussing the trajectory from data to insight to decision, the book describes four approaches to machine learning: information-based learning, similarity-based learning, probability-based learning, and error-based learning. Each of these approaches is introduced by a nontechnical explanation of the underlying concept, followed by mathematical models and algorithms illustrated by detailed worked examples. Finally, the book considers techniques for evaluating prediction models and offers two case studies that describe specific data analytics projects through each phase of development, from formulating the business problem to implementation of the analytics solution. The book, informed by the authors' many years of teaching machine learning, and working on predictive data analytics projects, is suitable for use by undergraduates in computer science, engineering, mathematics, or statistics; by graduate students in disciplines with applications for predictive data analytics; and as a reference for professionals., A comprehensive introduction to the most important machine learning approaches used in predictive data analytics, covering both theoretical concepts and practical applications. Machine learning is often used to build predictive models by extracting patterns from large datasets. These models are used in predictive data analytics applications including price prediction, risk assessment, predicting customer behavior, and document classification. This introductory textbook offers a detailed and focused treatment of the most important machine learning approaches used in predictive data analytics, covering both theoretical concepts and practical applications. Technical and mathematical material is augmented with explanatory worked examples, and case studies illustrate the application of these models in the broader business context.After discussing the trajectory from data to insight to decision, the book describes four approaches to machine learning- information-based learning, similarity-based learning, probability-based learning, and error-based learning. Each of these approaches is introduced by a nontechnical explanation of the underlying concept, followed by mathematical models and algorithms illustrated by detailed worked examples. Finally, the book considers techniques for evaluating prediction models and offers two case studies that describe specific data analytics projects through each phase of development, from formulating the business problem to implementation of the analytics solution. The book, informed by the authors' many years of teaching machine learning, and working on predictive data analytics projects, is suitable for use by undergraduates in computer science, engineering, mathematics, or statistics; by graduate students in disciplines with applications for predictive data analytics; and as a reference for professionals.
LC Classification Number
Q325.5.K455 2015

Artikelbeschreibung des Verkäufers

Rechtliche Informationen des Verkäufers

Ich versichere, dass alle meine Verkaufsaktivitäten in Übereinstimmung mit allen geltenden Gesetzen und Vorschriften der EU erfolgen.
Info zu diesem Verkäufer

nerdssavetheworld

100% positive Bewertungen348 Artikel verkauft

Mitglied seit Okt 1999
Antwortet meist innerhalb 1 Stunde
Angemeldet als gewerblicher Verkäufer

Detaillierte Verkäuferbewertungen

Durchschnitt in den letzten 12 Monaten
Genaue Beschreibung
5.0
Angemessene Versandkosten
5.0
Lieferzeit
5.0
Kommunikation
4.9

Verkäuferbewertungen (126)

Alle Bewertungen
Positiv
Neutral
Negativ
  • e***n (120)- Bewertung vom Käufer.
    Letzte 6 Monate
    Bestätigter Kauf
    Very happy with this purchase! The packaging was great, and the value was well worth the price. Shipping was fast. Just as the listing described.
  • s***j (111)- Bewertung vom Käufer.
    Letztes Jahr
    Bestätigter Kauf
    Thank you again.. love doing business with this seller.. they are awesome & responsive & fast shipping & very fair shipping price. I’ve done business twice & will again hopefully in the future.. they deserve 10 stars but since I can’t then I’ll say A+++++++++++++ Thank you to the seller & to any potential buyers that read this, don’t hesitate bc you are in good hands & they definitely package the items very, very well..
  • 4***r (33)- Bewertung vom Käufer.
    Letzte 6 Monate
    Bestätigter Kauf
    Items arrived quickly and safely. Great packaging to protect them. Items were in good condition as described. Happy with the purchase. Thank you!