LCCN2019-037293
Reviews"This book by Mohammed Zaki and Wagner Meira Jr is a great option for teaching a course in data mining or data science. It covers both fundamental and advanced data mining topics, explains the mathematical foundations and the algorithms of data science, includes exercises for each chapter, and provides data, slides and other supplementary material on the companion website." Gregory Piatetsky-Shapiro, Founder, ACM SIGKDD, the leading professional organization for Knowledge Discovery and Data Mining
Dewey Decimal006.312
Table Of Content1. Data mining and analysis; Part I. Data Analysis Foundations: 2. Numeric attributes; 3. Categorical attributes; 4. Graph data; 5. Kernel methods; 6. High-dimensional data; 7. Dimensionality reduction; Part II. Frequent Pattern Mining: 8. Itemset mining; 9. Summarizing itemsets; 10. Sequence mining; 11. Graph pattern mining; 12. Pattern and rule assessment; Part III. Clustering: 13. Representative-based clustering; 14. Hierarchical clustering; 15. Density-based clustering; 16. Spectral and graph clustering; 17. Clustering validation; Part IV. Classification: 18. Probabilistic classification; 19. Decision tree classifier; 20. Linear discriminant analysis; 21. Support vector machines; 22. Classification assessment; Part V. Regression: 23. Linear regression; 24. Logistic regression; 25. Neural networks; 26. Deep learning; 27. Regression evaluation.
SynopsisThis textbook for senior undergraduate and graduate students offers comprehensive coverage, an algorithmic perspective, and a wealth of examples in exploratory data analysis, pattern mining, clustering, and classification. New to this second edition are several chapters on regression, including neural networks and deep learning., The fundamental algorithms in data mining and machine learning form the basis of data science, utilizing automated methods to analyze patterns and models for all kinds of data in applications ranging from scientific discovery to business analytics. This textbook for senior undergraduate and graduate courses provides a comprehensive, in-depth overview of data mining, machine learning and statistics, offering solid guidance for students, researchers, and practitioners. The book lays the foundations of data analysis, pattern mining, clustering, classification and regression, with a focus on the algorithms and the underlying algebraic, geometric, and probabilistic concepts. New to this second edition is an entire part devoted to regression methods, including neural networks and deep learning.
LC Classification NumberQA76.9.D343Z36 2020