MOMENTAN AUSVERKAUFT

Linear Algebra and Its Applications Plus New Mylab Math with Pearson EText -- Access Card Package by Steven Lay, David Lay and Judi McDonald (2014, Hardcover / Trade Paperback)

Über dieses Produkt

Product Identifiers

PublisherPearson Education
ISBN-100134022696
ISBN-139780134022697
eBay Product ID (ePID)208655566

Product Key Features

Number of Pages576 Pages
LanguageEnglish
Publication NameLinear Algebra and Its Applications Plus New Mylab Math with Pearson Etext -- Access Card Package
SubjectGeneral
Publication Year2014
TypeTextbook
AuthorSteven Lay, David Lay, Judi McDonald
Subject AreaMathematics
FormatHardcover / Trade Paperback

Dimensions

Item Height0.9 in
Item Weight39.2 Oz
Item Length10.1 in
Item Width8.2 in

Additional Product Features

Edition Number5
Intended AudienceCollege Audience
Table Of Content1. Linear Equations in Linear Algebra Introductory Example: Linear Models in Economics and Engineering 1.1 Systems of Linear Equations 1.2 Row Reduction and Echelon Forms 1.3 Vector Equations 1.4 The Matrix Equation Ax = b 1.5 Solution Sets of Linear Systems 1.6 Applications of Linear Systems 1.7 Linear Independence 1.8 Introduction to Linear Transformations 1.9 The Matrix of a Linear Transformation 1.10 Linear Models in Business, Science, and Engineering Supplementary Exercises 2. Matrix Algebra Introductory Example: Computer Models in Aircraft Design 2.1 Matrix Operations 2.2 The Inverse of a Matrix 2.3 Characterizations of Invertible Matrices 2.4 Partitioned Matrices 2.5 Matrix Factorizations 2.6 The Leontief Input--Output Model 2.7 Applications to Computer Graphics 2.8 Subspaces of Rn 2.9 Dimension and Rank Supplementary Exercises 3. Determinants Introductory Example: Random Paths and Distortion 3.1 Introduction to Determinants 3.2 Properties of Determinants 3.3 Cramer''s Rule, Volume, and Linear Transformations Supplementary Exercises 4. Vector Spaces Introductory Example: Space Flight and Control Systems 4.1 Vector Spaces and Subspaces 4.2 Null Spaces, Column Spaces, and Linear Transformations 4.3 Linearly Independent Sets; Bases 4.4 Coordinate Systems 4.5 The Dimension of a Vector Space 4.6 Rank 4.7 Change of Basis 4.8 Applications to Difference Equations 4.9 Applications to Markov Chains Supplementary Exercises 5. Eigenvalues and Eigenvectors Introductory Example: Dynamical Systems and Spotted Owls 5.1 Eigenvectors and Eigenvalues 5.2 The Characteristic Equation 5.3 Diagonalization 5.4 Eigenvectors and Linear Transformations 5.5 Complex Eigenvalues 5.6 Discrete Dynamical Systems 5.7 Applications to Differential Equations 5.8 Iterative Estimates for Eigenvalues Supplementary Exercises 6. Orthogonality and Least Squares Introductory Example: The North American Datum and GPS Navigation 6.1 Inner Product, Length, and Orthogonality 6.2 Orthogonal Sets 6.3 Orthogonal Projections 6.4 The Gram--Schmidt Process 6.5 Least-Squares Problems 6.6 Applications to Linear Models 6.7 Inner Product Spaces 6.8 Applications of Inner Product Spaces Supplementary Exercises 7. Symmetric Matrices and Quadratic Forms Introductory Example: Multichannel Image Processing 7.1 Diagonalization of Symmetric Matrices 7.2 Quadratic Forms 7.3 Constrained Optimization 7.4 The Singular Value Decomposition 7.5 Applications to Image Processing and Statistics Supplementary Exercises 8. The Geometry of Vector Spaces Introductory Example: The Platonic Solids 8.1 Affine Combinations 8.2 Affine Independence 8.3 Convex Combinations 8.4 Hyperplanes 8.5 Polytopes 8.6 Curves and Surfaces 9. Optimization (Online Only) Introductory Example: The Berlin Airlift 9.1 Matrix Games 9.2 Linear Programming-Geometric Method 9.3 Linear Programming-Simplex Method 9.4 Duality 10. Finite-State Markov Chains (Online Only) Introductory Example: Googling Markov Chains 10.1 Introduction and Examples 10.2 The Steady-State Vector and Google''s PageRank 10.3 Communication Classes 10.4 Classification of States and Periodicity 10.5 The Fundamental Matrix 10.6 Markov Chains and Baseball Statistics Appendices A. Uniqueness of the Reduced Echelon Form B. Complex Numbers
SynopsisNOTE: Before purchasing, check with your instructor to ensure you select the correct ISBN. Several versions of Pearson's MyLab & Mastering products exist for each title, and registrations are not transferable. To register for and use Pearson's MyLab & Mastering products, you may also need a Course ID, which your instructor will provide. Used books, rentals, and purchases made outside of Pearson If purchasing or renting from companies other than Pearson, the access codes for Pearson's MyLab & Mastering products may not be included, may be incorrect, or may be previously redeemed. Check with the seller before completing your purchase. With traditional linear algebra texts, the course is relatively easy for students during the early stages as material is presented in a familiar, concrete setting. However, when abstract concepts are introduced, students often hit a wall. Instructors seem to agree that certain concepts (such as linear independence, spanning, subspace, vector space, and linear transformations) are not easily understood and require time to assimilate. These concepts are fundamental to the study of linear algebra, so students' understanding of them is vital to mastering the subject. This text makes these concepts more accessible by introducing them early in a familiar, concrete Rn setting, developing them gradually, and returning to them throughout the text so that when they are discussed in the abstract, students are readily able to understand. 0134022696 / 9780134022697 Linear Algebra and Its Applications plus New MyMathLab with Pearson eText -- Access Card Package Package consists of: 0321431308 / 9780321431301 MyMathLab -- Glue-in Access Card 0321654064 / 9780321654069 MyMathLab Inside Star Sticker 032198238X / 9780321982384 Linear Algebra and Its Applications, With traditional linear algebra texts, the course is relatively easy for students during the early stages as material is presented in a familiar, concrete setting. However, when abstract concepts are introduced, students often hit a wall. Instructors seem to agree that certain concepts (such as linear independence, spanning, subspace, vector space, and linear transformations) are not easily understood and require time to assimilate. These concepts are fundamental to the study of linear algebra, so students' understanding of them is vital to mastering the subject. This text makes these concepts more accessible by introducing them early in a familiar, concrete Rn setting, developing them gradually, and returning to them throughout the text so that when they are discussed in the abstract, students are readily able to understand. KEY TOPICS: Linear Equations in Linear Algebra; Matrix Algebra; Determinants; Vector Spaces; Eigenvalues and Eigenvectors; Orthogonality and Least Squares; Symmetric Matrices and Quadratic Forms; The Geometry of Vector Spaces; Optimization; Finite-State Markov Chains MARKET: for all readers interested in linear algebra. NOTE: Before purchasing, check with your instructor to ensure you select the correct ISBN. Several versions of Pearson's MyLab & Mastering products exist for each title, and registrations are not transferable. To register for and use Pearson's MyLab & Mastering products, you may also need a Course ID, which your instructor will provide. Used books, rentals, and purchases made outside of Pearson If purchasing or renting from companies other than Pearson, the access codes for Pearson's MyLab & Mastering products may not be included, may be incorrect, or may be previously redeemed. Check with the seller before completing your purchase., For courses in linear algebra. This package includes MyMathLab®. With traditional linear algebra texts, the course is relatively easy for students during the early stages as material is presented in a familiar, concrete setting. However, when abstract concepts are introduced, students often hit a wall. Instructors seem to agree that certain concepts (such as linear independence, spanning, subspace, vector space, and linear transformations) are not easily understood and require time to assimilate. These concepts are fundamental to the study of linear algebra, so students' understanding of them is vital to mastering the subject. This text makes these concepts more accessible by introducing them early in a familiar, concrete Rn setting, developing them gradually, and returning to them throughout the text so that when they are discussed in the abstract, students are readily able to understand. Personalize learning with MyMathLab MyMathLab is an online homework, tutorial, and assessment program designed to work with this text to engage students and improve results. MyMathLab includes assignable algorithmic exercises, the complete eBook, interactive figures, tools to personalize learning, and more.

Bewertungen und Rezensionen

5.0
1 Produktbewertung
  • 1 Nutzer haben dieses Produkt mit 5 von 5 Sternen bewertet
  • 0 Nutzer haben dieses Produkt mit 4 von 5 Sternen bewertet
  • 0 Nutzer haben dieses Produkt mit 3 von 5 Sternen bewertet
  • 0 Nutzer haben dieses Produkt mit 2 von 5 Sternen bewertet
  • 0 Nutzer haben dieses Produkt mit 1 von 5 Sternen bewertet

Would recommend

Good value

Compelling content

Es gibt Bewertungen, aber noch keine Rezensionen.