|Eingestellt in Kategorie:

Kausale Inferenz für Statistik Sozialbiomedizinische Wissenschaften Mathematik wie neu-

Ursprünglicher Text
Causal Inference for Statistics Social Biomedical Sciences Mathematics LIke New
oldmagazines
(6192)
Angemeldet als privater Verkäufer
Verbraucherschützende Vorschriften, die sich aus dem EU-Verbraucherrecht ergeben, finden daher keine Anwendung. Der eBay-Käuferschutz gilt dennoch für die meisten Käufe. Mehr erfahren
US $39,99
Ca.EUR 34,81
Artikelzustand:
Neuwertig
Hardcover. Like new condition. Former owner's name written on inside front cover. No other ... Mehr erfahrenÜber den Artikelzustand
Versand:
Standort: Saint Louis, Missouri, USA
Lieferung:
Weitere Infos zur Lieferzeit in der Artikelbeschreibung
Rücknahme:
Keine Rücknahme.
Zahlungen:
   Diners Club 

Sicher einkaufen

eBay-Käuferschutz
Geld zurück, wenn etwas mit diesem Artikel nicht stimmt. Mehr erfahreneBay-Käuferschutz - wird in neuem Fenster oder Tab geöffnet

  • Gratis Rückversand im Inland
  • Punkte für jeden Kauf und Verkauf
  • Exklusive Plus-Deals
Der Verkäufer ist für dieses Angebot verantwortlich.
eBay-Artikelnr.:157068823040

Artikelmerkmale

Artikelzustand
Neuwertig
Buch, das wie neu aussieht, aber bereits gelesen wurde. Der Einband weist keine sichtbaren Gebrauchsspuren auf. Bei gebundenen Büchern ist der Schutzumschlag vorhanden (sofern zutreffend). Alle Seiten sind vollständig vorhanden, es gibt keine zerknitterten oder eingerissenen Seiten und im Text oder im Randbereich wurden keine Unterstreichungen, Markierungen oder Notizen vorgenommen. Der Inneneinband kann minimale Gebrauchsspuren aufweisen. Minimale Gebrauchsspuren. Genauere Einzelheiten sowie eine Beschreibung eventueller Mängel entnehmen Sie bitte dem Angebot des Verkäufers. Alle Zustandsdefinitionen aufrufenwird in neuem Fenster oder Tab geöffnet
Hinweise des Verkäufers
“Hardcover. Like new condition. Former owner's name written on inside front cover. No other ...
Book Title
Causal Inference for Statistics, Social, and Biomedical Sciences
ISBN-13
9780521885881
Educational Level
Adult & Further Education
Level
Advanced
Features
1st Edition, Illustrated
Country/Region of Manufacture
United States
ISBN
9780521885881

Über dieses Produkt

Product Identifiers

Publisher
Cambridge University Press
ISBN-10
0521885884
ISBN-13
9780521885881
eBay Product ID (ePID)
201647837

Product Key Features

Number of Pages
644 Pages
Publication Name
Causal Inference for Statistics, Social, and Biomedical Sciences : an Introduction
Language
English
Subject
Probability & Statistics / General, General, Research, Logic
Publication Year
2015
Type
Textbook
Author
Donald B. Rubin, Guido W. Imbens
Subject Area
Mathematics, Philosophy, Social Science
Format
Hardcover

Dimensions

Item Height
1.3 in
Item Weight
45.2 Oz
Item Length
10.3 in
Item Width
7.3 in

Additional Product Features

Intended Audience
Scholarly & Professional
LCCN
2014-020988
Reviews
"Correctly drawing causal inferences is critical in many important applications. Congratulations to Professors Imbens and Rubin, who have drawn on their decades of research in this area, along with the work of several others, to produce this impressive book covering concepts, theory, methods and applications. I especially appreciate their clear exposition on conceptual issues, which are important to understand in the context of either a designed experiment or an observational study, and their use of real applications to motivate the methods described." Nathaniel Schenker, Statistician, "This book will revolutionize how applied statistics is taught in statistics and the social and biomedical sciences. The authors present a unified vision of causal inference that covers both experimental and observational data. They do a masterful job of communicating some of the deepest, and oldest, issues in statistics to readers with disparate backgrounds. They closely connect theoretical concepts with applied concerns, and they honestly and clearly discuss the identifying assumptions of the methods presented. Too many books on statistical methods present a menagerie of disconnected methods and pay little attention to the scientific plausibility of the assumptions that are made for mathematical convenience, instead of for verisimilitude. This book is different. It will be widely read, and it will change the way statistics is practiced." Jasjeet S. Sekhon, Robson Professor of Political Science and Statistics, University of California, Berkeley, "A comprehensive and remarkably clear overview of randomized experiments and observational designs with as-good-as-random assignment that is sure to become the standard reference in the field." David Card, Class of 1950 Professor of Economics, University of California, Berkeley, "This thorough and comprehensive book uses the "potential outcomes" approach to connect the breadth of theory of causal inference to the real-world analyses that are the foundation of evidence-based decision making in medicine, public policy and many other fields. Imbens and Rubin provide unprecedented guidance for designing research on causal relationships, and for interpreting the results of that research appropriately." Mark McClellan, Director of the Health Care Innovation and Value Initiative, Brookings Institution, "This book will be the "Bible" for anyone interested in the statistical approach to causal inference associated with Donald Rubin and his colleagues, including Guido Imbens. Together, they have systematized the early insights of Fisher and Neyman and have then vastly developed and transformed them. In the process they have created a theory of practical experimentation whose internal consistency is mind-boggling, as is its sensitivity to assumptions and its elaboration of the key 'potential outcomes' framework. The authors' exposition of random assignment experiments has breadth and clarity of coverage, as do their chapters on observational studies that can be readily conceptualized within an experimental framework. Never have experimental principles been better warranted intellectually or better translated into statistical practice. The book is a "must read" for anyone claiming methodological competence in all sciences that rely on experimentation." Thomas D. Cook, Joan and Sarepta Harrison Chair of Ethics and Justice, Northwestern University, Illinois, "Clarity of thinking about causality is of central importance in financial decision making. Imbens and Rubin provide a rigorous foundation allowing practitioners to learn from the pioneers in the field." Stephen Blyth, Managing Director, Head of Public Markets, Harvard Management Company, "Causal Inference sets a high new standard for discussions of the theoretical and practical issues in the design of studies for assessing the effects of causes - from an array of methods for using covariates in real studies to dealing with many subtle aspects of non-compliance with assigned treatments. The book includes many examples using real data that arose from the authors' extensive research portfolios. These examples help to clarify and explain many important concepts and practical issues. It is a book that both methodologists and practitioners from many fields will find both illuminating and suggestive of further research. It is a professional tour de force, and a welcomed addition to the growing (and often confusing) literature on causation in artificial intelligence, philosophy, mathematics and statistics." Paul W. Holland, Emeritus, Educational Testing Service, "'In this wonderful and important book, Imbens and Rubin give a lucid account of the potential outcomes perspective on causality. This perspective sensibly treats all causal questions as questions about a hidden variable, indeed the ultimate hidden variable, "What would have happened if things were different?" They make this perspective mathematically precise, show when and to what degree it succeeds, and discuss how to apply it to both experimental and observational data. This book is a must-read for natural scientists, social scientists and all other practitioners who seek new hypotheses and new truths in their complex data." David Blei, Columbia University, "The book is well-written with a very comprehensive coverage of many issues associated with causal inference. As can be seen from its table of contents, the book uses multiple perspectives to discuss these issues including theoretical underpinnings, experimental design, randomization techniques and examples using real-world data." Carol Joyce Blumberg, International Statistical Review, "This book offers a definitive treatment of causality using the potential outcomes approach. Both theoreticians and applied researchers will find this an indispensable volume for guidance and reference." Hal Varian, University of California, Berkeley, "This book will be the "Bible" for anyone interested in the statistical approach to causal inference associated with Donald Rubin and his colleagues, including Guido Imbens. Together, they have systematized the early insights of Fisher and Neyman and have then vastly developed and transformed them. In the process they have created a theory of practical experimentation whose internal consistency is mind-boggling, as is its sensitivity to assumptions and its elaboration of the key 'potential outcomes' framework. The authors' exposition of random assignment experiments has breadth and clarity of coverage, as do their chapters on observational studies that can be readily conceptualized within an experimental framework. Never have experimental principles been better warranted intellectually or better translated into statistical practice. The book is a "must read" for anyone claiming methodological competence in all sciences that rely on experimentation." Thomas D. Cook, Joan and Sarepta Harrison Chair of Ethics and Justice, Northwestern University, "A masterful account of the potential outcomes approach to causal inference from observational studies that Rubin has been developing since he pioneered it fourty years ago." Adrian Raftery, Blumstein-Jordan Professor of Statistics and Sociology, University of Washington, "This thorough and comprehensive book uses the "potential outcomes" approach to connect the breadth of theory of causal inference to the real-world analyses that are the foundation of evidence-based decision making in medicine, public policy and many other fields. Imbens and Rubin provide unprecedented guidance for designing research on causal relationships, and for interpreting the results of that research appropriately." Mark McClellan, Director of the Health Care Innovation and Value Initiative, Brookings Institution, Washington DC, "By putting the potential outcome framework at the center of our understanding of causality, Imbens and Rubin have ushered in a fundamental transformation of empirical work in economics. This book, at once transparent and deep, will be both a fantastic introduction to fundamental principles and a practical resource for students and practitioners. It will be required readings for any class I teach." Esther Duflo, Massachusetts Institute of Technology, "This book will be the "Bible" for anyone interested in the statistical approach to causal inference associated with Donald Rubin and his colleagues, including Guido Imbens. Together, they have systematized the early insights of Fisher and Neyman and have then vastly developed and transformed them. In the process they have created a theory of practical experimentation whose internal consistency is mind-boggling, as is its sensitivity to assumptions and its elaboration of the key 'potential outcomes' framework. The authors' exposition of random assignment experiments has breadth and clarity of coverage, as do their chapters on observational studies that can be readily conceptualized within an experimental framework. Never have experimental principles been better warranted intellectually or better translated into statistical practice. The book is a "must read" for anyone claiming methodological competence in all sciences that rely on experimentation." Thomas D. Cook, Joan and Sarepta Harrison Chair of Ethics and Justice, Northwestern University, Illinoisof Ethics and Justice, Northwestern University, Illinoisof Ethics and Justice, Northwestern University, Illinoisof Ethics and Justice, Northwestern University, Illinois, "This book offers a definitive treatment of causality using the potential outcomes approach. Both theoreticians and applied researchers will find this an indispensable volume for guidance and reference." Hal Varian, Chief Economist, Google and Emeritus Professor, University of California, Berkeley
Dewey Edition
23
Illustrated
Yes
Dewey Decimal
519.54
Table Of Content
Part I. Introduction: 1. The basic framework: potential outcomes, stability, and the assignment mechanism; 2. A brief history of the potential-outcome approach to causal inference; 3. A taxonomy of assignment mechanisms; Part II. Classical Randomized Experiments: 4. A taxonomy of classical randomized experiments; 5. Fisher's exact P-values for completely randomized experiments; 6. Neyman's repeated sampling approach to completely randomized experiments; 7. Regression methods for completely randomized experiments; 8. Model-based inference in completely randomized experiments; 9. Stratified randomized experiments; 10. Paired randomized experiments; 11. Case study: an experimental evaluation of a labor-market program; Part III. Regular Assignment Mechanisms: Design: 12. Unconfounded treatment assignment; 13. Estimating the propensity score; 14. Assessing overlap in covariate distributions; 15. Design in observational studies: matching to ensure balance in covariate distributions; 16. Design in observational studies: trimming to ensure balance in covariate distributions; Part IV. Regular Assignment Mechanisms: Analysis: 17. Subclassification on the propensity score; 18. Matching estimators (Card-Krueger data); 19. Estimating the variance of estimators under unconfoundedness; 20. Alternative estimands; Part V. Regular Assignment Mechanisms: Supplementary Analyses: 21. Assessing the unconfoundedness assumption; 22. Sensitivity analysis and bounds; Part VI. Regular Assignment Mechanisms with Noncompliance: Analysis: 23. Instrumental-variables analysis of randomized experiments with one-sided noncompliance; 24. Instrumental-variables analysis of randomized experiments with two-sided noncompliance; 25. Model-based analyses with instrumental variables; Part VII. Conclusion: 26. Conclusions and extensions.
Synopsis
Most questions in social and biomedical sciences are causal in nature: what would happen to individuals, or to groups, if part of their environment were changed? In this groundbreaking text, two world-renowned experts present statistical methods for studying such questions. This book starts with the notion of potential outcomes, each corresponding to the outcome that would be realized if a subject were exposed to a particular treatment or regime. In this approach, causal effects are comparisons of such potential outcomes. The fundamental problem of causal inference is that we can only observe one of the potential outcomes for a particular subject. The authors discuss how randomized experiments allow us to assess causal effects and then turn to observational studies. They lay out the assumptions needed for causal inference and describe the leading analysis methods, including matching, propensity-score methods, and instrumental variables. Many detailed applications are included, with special focus on practical aspects for the empirical researcher., Most questions in social and biomedical sciences are causal in nature: what would happen to individuals, or to groups, if part of their environment were changed? In this groundbreaking text, two world-renowned experts present statistical methods for studying such questions. This book starts with the notion of potential outcomes, each corresponding to the outcome that would be realized if a subject were exposed to a particular treatment or regime. In this approach, causal effects are comparisons of such potential outcomes. The fundamental problem of causal inference is that we can only observe one of the potential outcomes for a particular subject. The authors discuss how randomized experiments allow us to assess causal effects and then turn to observational studies. They lay out the assumptions needed for causal inference and describe the leading analysis methods, including, matching, propensity-score methods, and instrumental variables. Many detailed applications are included, with special focus on practical aspects for the empirical researcher., In this groundbreaking text, two world-renowned experts present statistical methods for studying causal effects: how can we learn about the expected effect of an intervention or a change in environment? The authors discuss how we can assess such effects in simple randomized experiments, where the researcher controls the treatments, and in observational studies, where the subjects themselves may affect which treatment they receive.
LC Classification Number
H62 .I537 2015

Artikelbeschreibung des Verkäufers

Info zu diesem Verkäufer

oldmagazines

100% positive Bewertungen11.307 Artikel verkauft

Mitglied seit Feb 2000
Antwortet meist innerhalb 12 Stunden
Angemeldet als privater VerkäuferDaher finden verbraucherschützende Vorschriften, die sich aus dem EU-Verbraucherrecht ergeben, keine Anwendung. Der eBay-Käuferschutz gilt dennoch für die meisten Käufe. Mehr erfahrenMehr erfahren
Oldmagazines is an established ebay seller with more than 20 years experience. Oldmagazines has a huge stock of old Life magazines, most not listed. These make great birthday or anniversary gifts. ...
Mehr anzeigen
Shop besuchenKontakt

Detaillierte Verkäuferbewertungen

Durchschnitt in den letzten 12 Monaten
Genaue Beschreibung
4.9
Angemessene Versandkosten
4.9
Lieferzeit
4.9
Kommunikation
5.0

Verkäuferbewertungen (6.448)

Alle Bewertungen
Positiv
Neutral
Negativ