ReviewsPraise forThe Road to Realityby Roger Penrose "A truly remarkable book...Penrose does much to reveal the beauty and subtlety that connects nature and the human imagination, demonstrating that the quest to understand the reality of our physical world, and the extent and limits of our mental capacities, is an awesome, never-ending journey rather than a one-way cul-de-sac." -London Sunday Times "Penrose's work is genuinely magnificent, and the most stimulating book I have read in a long time." -Scotland on Sunday "Science needs more people like Penrose, willing and able to point out the flaws in fashionable models from a position of authority and to signpost alternative roads to follow." -The Independent "What a joy it is to read a book that doesn't simplify, doesn't dodge the difficult questions, and doesn't always pretend to have answers...Penrose's appetite is heroic, his knowledge encyclopedic, his modesty a reminder that not all physicists claim to be able to explain the world in 250 pages." -London Times "For physics fans, the high point of the year will undoubtedly beThe Road to Reality." -Guardian From the Hardcover edition.
Dewey Decimal500.2
Table Of ContentPreface Acknowledgements Notation Prologue 1 The roots of science 1.1 The quest for the forces that shape the world 1.2 Mathematical truth 1.3 Is Plato's mathematical world 'real'? 1.4 Three worlds and three deep mysteries 1.5 The Good, the True, and the Beautiful 2 An ancient theorem and a modern question 2.1 The Pythagorean theorem 2.2 Euclid's postulates 2.3 Similar-areas proof of the Pythagorean theorem 2.4 Hyperbolic geometry: conformal picture 2.5 Other representations of hyperbolic geometry 2.6 Historical aspects of hyperbolic geometry 2.7 Relation to physical space 3 Kinds of number in the physical world 3.1 A Pythagorean catastrophe? 3.2 The real-number system 3.3 Real numbers in the physical world 3.4 Do natural numbers need the physical world? 3.5 Discrete numbers in the physical world 4 Magical complex numbers 4.1 The magic number 'i' 4.2 Solving equations with complex numbers 4.3 Convergence of power series 4.4 Caspar Wessel's complex plane 4.5 How to construct the Mandelbrot set 5 Geometry of logarithms, powers, and roots 5.1 Geometry of complex algebra 5.2 The idea of the complex logarithm 5.3 Multiple valuedness, natural logarithms 5.4 Complex powers 5.5 Some relations to modern particle physics 6 Real-number calculus 6.1 What makes an honest function? 6.2 Slopes of functions 6.3 Higher derivatives; C1-smooth functions 6.4 The 'Eulerian' notion of a function? 6.5 The rules of differentiation 6.6 Integration 7 Complex-number calculus 7.1 Complex smoothness; holomorphic functions 7.2 Contour integration 7.3 Power series from complex smoothness 7.4 Analytic continuation 8 Riemann surfaces and complex mappings 8.1 The idea of a Riemann surface 8.2 Conformal mappings 8.3 The Riemann sphere 8.4 The genus of a compact Riemann surface 8.5 The Riemann mapping theorem 9 Fourier decomposition and hyperfunctions 9.1 Fourier series 9.2 Functions on a circle 9.3 Frequency splitting on the Riemann sphere 9.4 The Fourier transform 9.5 Frequency splitting from the Fourier transform 9.6 What kind of function is appropriate? 9.7 Hyperfunctions 10 Surfaces 10.1 Complex dimensions and real dimensions 10.2 Smoothness, partial derivatives 10.3 Vector Fields and 1-forms 10.4 Components, scalar products 10.5 The CauchyRiemann equations 11 Hypercomplex numbers 11.1 The algebra of quaternions 11.2 The physical role of quaternions? 11.3 Geometry of quaternions 11.4 How to compose rotations 11.5 Clifford algebras 11.6 Grassmann algebras 12 Manifolds of n dimensions 12.1 Why study higher-dimensional manifolds? 12.2 Manifolds and coordinate patches 12.3 Scalars, vectors, and covectors 12.4 Grassmann products 12.5 Integrals of forms 12.6 Exterior derivative 12.7 Volume element; summation convention 12.8 Tensors; abstract-index and diagrammatic notation 12.9 Complex manifolds 13 Symmetry groups 13.1 Groups of transformations 13.2 Subgroups and simple groups 13.3 Linear transformations and matrices 13.4 Determinants and traces 13.5 Eigenvalues and eigenvectors 13.6 Representation theory and Lie algebras 13.7 Tensor representation spaces; reducibility 13.8 Orthogonal groups 13.9 Unitary groups 13.10 Symplectic groups 14 Calculus on manifolds 14.1 Differentiation on a manifold? 14.2 Parallel transport 14.3 Covariant derivative 14.4 Curvature and torsion 14.5 Geodesics, parallelograms, and curvature 14.6 Lie derivative 14.7 What a metric can do for you 14.8 Symplectic manifolds <br
SynopsisThe Road to Reality is the most important and ambitious work of science for a generation. It provides nothing less than a comprehensive account of the physical universe and the essentials of its underlying mathematical theory. It assumes no particular specialist knowledge on the part of the reader, so that, for example, the early chapters give us the vital mathematical background to the physical theories explored later in the book. Roger Penrose's purpose is to describe as clearly as possible our present understanding of the universe and to convey a feeling for its deep beauty and philosophical implications, as well as its intricate logical interconnections. The Road to Reality is rarely less than challenging, but the book is leavened by vivid descriptive passages, as well as hundreds of hand-drawn diagrams. In a single work of colossal scope one of the world's greatest scientists has given us a complete and unrivalled guide to the glories of the universe that we all inhabit., One of todays most accomplished scientists presents the only comprehensive and comprehensible account of the physics of the universe. Penrose examines the mathematical foundations of the physical universe, exposing the underlying beauty of physics and giving us one the most important works in modern science writing., This is arguably the most important work of science, aimed at the general reader, to be published in living memory.